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Ah&net--The purpose of the present paper is to make a careful study of the breakdown of stability of a 
layer of fluid subject to a vertical temperature gradient in a porous medium, and to give a conclusive 
cirterion for the onset of convection currents. 

Through theoretical examinations, it is pointed out that the phenomenon is affected with a specially 
defined thermal diffusivity, and that there are possibilities for the ordinary theory based upon Darcy’s 
law to be applicable even when the permeability of the porous medium becomes considerably high. 
Careful experiments also are carried out, in which the difliculties to generate the convective flow in the 
porous medium under reasonable temperature gradient are overcome by the use of the porous medium 
of comparatively high permeability, as well as by the use of a compressible gas as the fluid. 

Satisfying agreement of the ex~rimental results with the theory is obtained to provide conclusions that 
the criterion for the onset of convective flow is certainly given by the equation: Ra . k/l2 = 472’ where Ra 
is Rayleigh number, k the permeability, and I the verticai thickness of the porous medium, but that the 
thermal diffusivity included in Ra must be defined as the thermal conductivity of porous medium divided 

by the specific heat capacity of fluid. 
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NOMENCLATURE 

specific heat at constant pressure; 
diameter of Ming particles ; 
gravitational acceleration ; 
permeability ; 
vertical thickness of porous layer; 
pressure of fluid ; 
Rayleigh number, = g/U3AT/(vx); 
temperature ; 
temperature difference between upper 
and lower bounding plates; 
time ; 

components of velocity; 
coordinates. 

Greek symbols 

81 cubical expansion-~oe~cient ; 

8, porosity ; 

% thermal diffusivity ; 
A, thermal conductivity; 
;1 NV thermal conductivity of porous me- 

dium (without convection!; 

IJct, viscosity ; 

V, kinematic viscosity ; 

r”;, 

density ; 
value of fluid ; 

f ),Y value of mixture of solid and fluid ; 
( A* value of solid. 

1. INTRODUCTION 

THE PROBLEM of the occurrence of convection 
currents in a horizontal layer of viscous fluid 
such as shown in Fig. l(a) has been given a 
conclusive answer by experimental veri~~tions, 
as well as by the theory originated by Rayleigh 
and finally extended to the work of Pellew and 
Southwell [l]. On the other hand, Fig. l(b) 
is a porous medium composed with spherical 
fillings as an example. The convective flow 
occurs in such a case also when heated from 
below, but the criterion for the occurrence of 
convection has not been confirmed so well as 
in the former case. 

In connection with the distribution of NaCl 
in subterranean sand-layers, Horton and Rogers 
[2] made a theoretical analysis. Lapwood [3] 
also solved the problems of similar kind 
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independently and more exactly, and gave the 
same result as that of Horton and Rogers for 
the porous medium which is bounded above and 
below by rigid and conducting boundaries. 
On the other hand, Morrison, Rogers and 
Horton [4] made experiments to verify the 

(0) 

FIG. 1. 

(b) 

(a) Horizontal layer of fluid. 
(b) Porous layer with spherical fillings. 

theoretical result, but due to the unsteady 
conditions under which their experiments were 
made as well as due to other reasons, not only 
were the results complicated but they did not 
agree with the theoretical predictions. Then 
Rogers and others [S, 61 attempted to compare 
their experiments with the approximate theories 
which allow for the non-linear temperature 
distributions and for the temperature depen- 
dence of viscosity, but it cannot be denied from 
the viewpoint of the fundamental analysis of 
the phenomenon that great ambiguities are left. 

At this stage, the present work has been 
attempted to give a definite answer to the 
problem through both the examinations of 
the theory and experimental verifications. 

2. EXAMINATIONS OF THEORY 

The actual flow of fluid in a porous medium 
is replaced by the hypothetical uniform flow of 
the same gross rate, assuming the space to be 
homogeneous. For this flow the expression of 
the resistance differs from the ordinary flow, 
and instead of the shearing stress proportional 

to the velocity gradient, Darcy’s law is generally 
applied : 

@/k)v = - grad p (1) 

where p is the viscosity, k the permeability (a 
constant with the dimension of square of 
length), v the macroscopic velocity and p the 
pressure of the fluid. 

Taking rectangular axes in a porous medium 
as shown in Fig. 2 where the space is assumed 
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FIG. 2. Porous layer bounded by two horizontal surfaces. 

to be uniform, let U, u and w be the macroscopic 
velocity components of fluid, and let p be the 
density, T the temperature, t the time, and g 
the gravitational acceleration. Then, only re- 
placing the customary viscosity term in the 
equations of a horizontal layer of fluid by the 
resistance term in the left-hand side of (l), 
provides the equations of continuity, of motion 
and of energy as follows : 

-+(g+ ;+;) (2) 

P&Wv) = (O,O, -PS) - ;,;7; P 
( > 

(4) 

where x in (4) is the thermal diffusivity of porous 
medium. 
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The criterion for the onset of convection 
currents can be derived with these governing 
equations in quite the same way as in the 
horizontal layer of fluid, except that the bound- 
ary conditions for velocity at the upper and 
lower bounding planes are now w = 0 instead 
of u = u = w = 0. Then the criterion, which 
Lapwood [3] has derived, can be written as 

Rl+41C2 
where Rayleigh number Ra z g~~3AT/(v~), and 
fl is the cubical expansion-coefficient of fluid, 
1 the vertical thickness of porous medium, AT 
the temperature difference between the two 
bounding planes, and v the kinematic viscosity. 

2.1 Examinations 
Since the fillings are included in a small 

control volume shown in Fig. 2, i&4% incfuded 
in Dp/Dt in (2) must be correctly replaced by 
dp/&, the E denoting the porosity (Muskat [7]). 
In the Ieft-hand side of (3), the forces of inertia 
depending upon the time variation of the 
macroscopic velocities are different from the 
actual forces. In addition, it is used to neglect 
the force of inertia in the flow through a porous 
medium, since the force of inertia is extremely 
small as compared with the viscous resistance. 

These points, however, go out of the question 
for thefo11owingcircumstances. In the theoretical 
investigation on the onset ofconvection currents, 
(a) variations of density are used to be neglected, 
except in so far as they modify the action of 
gravity; (b) second-order terms are used to be 
neglected ; (c) as pointed out primarily by 
Jeffreys [S], the onset of convection currents is 
characterized by the condition of marginal 
stabifity, that is, the condition which is obtained 
by placing a/& = 0. These three conditions, 
which are quite reasonable, make the left- 
hand sides of both (2) and (3) vanish to leave no 
space for the questions aforementioned to affect 
the theoretical prediction of (5). 

However, the balance among the time varia- 
tion of the energy stored in a small control 

volume shown in Fig. 2, the trans~~ation of 
enthalpy by the flow of fluid, and the heat 
conduction through the control volume, yields 

(~~~)~~+(~~~)~ u~+l$+w~ 
( > 

= 
A 

( 

a2T I d2T I a2T 

m ax2 ay2 az2 > 

(6) 

where cP is the specific heat at constant pressure, 
p the density, and L the thermal conductivity. 
The suffi m denotes the mixture of solid fillings 
and fluid, and the suffix f denotes the fluid. 

Comparing (4) with (6), and placing d/at = 0 
from the condition of marginal stability, it is 
found that the special thermal diffusivity de- 
fined as 

x = U(C,P)/ (7) 

must be used in (5) instead of 

x = U(C,P), (8) 

which has been used up to now. Since the 
magnitude of x defined in (7) is considerably 
different from that in (8) in general, the distinc- 
tion between them is of great importance. 

2.2 Applicable range of equation (5) 
The inclined solid line shown in Fig. 3 

is the result of (5), giving the critical Rayleigh 
number Ra as a function of k/l’. When the 

FIG. 3. Critical Rayteigh number Ra as a function of k/l’. 
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permeability k becomes high, however, the 
resistance due to Darcy’s law (1) inevitably 
reduces. It is, therefore, presumed from the 
physical point of view that the phenomenon 
changes its mode towards that of the ordinary 
horizontal layer of fluid, the horizontal line 
in Fig. 3 showing its theoretical criterion of 
Ra = 1708. 

Although the exact analysis of this transitional 
region has great difficulties, let us attempt the 
following analysis for the sake of convenience. 
In the governing equations (2), (3) and (4) the 
ordinary viscous resistance ,&(u, u, w) is added 
to the right-hand side of (3) yielding 

p; (u. u, w) = (0, 0, - pg) 

- ( 1 g, $9 ; p - ; (u. 0, w) + /mu, u, w) 

(3’) 

where the boundary conditions for velocity at 
two bounding planes are u = u = w = 0. As 
clear from (3’), the present analysis approaches 
to the theory of the porous medium as the 
permeability k reduces, and it does to the theory 
of the ordinary layer of fluid as k increases ; 
consequently, as the first approximation at 
least, the present analysis can connect the two 
theories. 

The analysis is accomplished in the way 
analogous to that of Pellew and Southwell [I]. 
Under the conditions of (a), (b) and (c) described 
in Section 2.1, the small departure from the 
state of equilibrium are considered following (2). 
(3’) and (4). Eliminating u and u as well as the 
departure of temperature and pressure by 
combining the equations, yields the following 
differential equation as to the vertical compo- 
nent of velocity w: 

($_;)v4w+!!$($+$) =o (9) 

a denoting the temperature gradient (a < 0). The six arbitrary constants in (12) are deter- 
Putting w = w(z) sin mx sin ny and z = li in mined so as to satisfy the three boundary 

(9) yields 

- a2)3 - (D2kjz2)z + Ra aj w = 0 

(10) 

where we have written D = a/ac,a2 = (m’ + n2)12 
which is a characteristc number not yet deter- 
mined, and Ra = -gfi14a/(vx) = g/?13AT/(vx) 
which is Rayleigh number. The boundary 
conditions at the two rigid conducting planes 
that u = tl = w = 0 and no disturbance of 
temperature, also can be unified in terms of w as : 

w = 0, 
Dw = 0, 

1 

(11) 
[(D2 - a2)2 - (D2 - a2)/(k/12)] w = 0. 

The general solution of (10) can be written in 
the form 
w = A,cosh2y,[ + A,cosh2y,[ 

+ A,cosh2y,[ + Bisinh 2y,[ + B,sinh2y,[ 

+ B, sinh 2y,[ (12) 

where A,, A,, A3, B,, B,, B, are arbitrary and 
4y:, 4y& 4~: are the three values of D2 which 
are given when (10) is solved symbolically. 
If k/l2 is small as in the case of particular im- 
portance in the present paper, all the three 
values of D2 are real and they are 

D2 = 4~’ = a2 + 1 + 2 cos r/3 . 

3k/12 ’ 
1 

a2 + 
1 + 2 cos(r/3 + 120”). 

3k/12 ’ 

a2 + 1 + 2 cos (r/3 + 240”) 

3k/12 
where 

cos I = 1 - + Ra . a2(3k/12)3. J 

If k/l2 is sufiiciently small, (13) can be approxi- 
mated as follows : 

4y2 = a2 + 1/(k/12); a2 - a J(Ra. k/12); 

a2 + a J(Ra . k/12). 
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conditions of (11) at each of the upper and lower 
boundaries. The problem is to find the. state 
permitting the convective flow, that is, the state 
for which the six constants in (12) do not vanish 
simultaneously. For convenience the origin 
of c will now be changed .so as to define the 
upper and lower boundaries at [ = 3, [ = -3 
respectively. Then, in order for (12) to satisfy (11) 
at [ = &3 simultaneously, it should be either 
B1 = B2 = B, = 0 (even solution) or A, = 
AZ = A3 = 0 (odd solution). 

Substitution of the even solution into (11) 
gives three conditional equations for A,, AZ, A,, 
leading us to a determinant that must be 
satisfied to deny simultaneous vanishing of 
AI, AZ, A,. Included in the determinant are Ra, 
a2 and k/12, so that it gives a relation between 
Ra and a2 fixing k/l’. Then the lowest admissible 
value of Ra can be found at any value of kJ12 by 
changing u2. The same procedure is possible for 
the odd solution as well, but the lowest value of 
Ra thus obtained is higher than that obtained 
with the even solution. Consequently the critical 
Rayleigh number is determined by the even 
solution, and the results are shown in Fig. 3 
with a broken curve. 

This theoretical presumption seems likely 
to suggest that the region, over which (5) is 
applicable, can extend at least up to the magni- 
tude of k/l2 of 10m3 or so. If the porous medium 
made of spherical particles is considered, k/l2 
+ lo- 3 corresponds to considerably high values 
of d/l, where d is the diameter of the fillings and 
I the vertical thickness of the porous medium. 

For high values of d/l, the assumption of the 
homogeneity in the field may become question- 
able. As regards the theory, however, it must 
be pointed out that the microscopic state has 
been homogenized assuming the macroscopic 
velocities : u, v, w and macroscopic temperature : 
T, and that the theory has been constructed 
using the permeability k and the thermal 
conductivity of the porous medium 1, which 
are both defined for the macroscopic quantities 
aforementioned. In addition, approximately 
speaking, the k and A,,, are to be determined as 

properties of the unit space per one of the filling 
particles. Consequently it is not unreasonable 
to presume that even when d/l becomes com- 
paratively high, the accuracy of the theoretical 
predictions does not deteriorate excessively 
if very severe variations of velocity and tempera- 
ture do not appear in the field. 

3. EXPERIMENTAL. APPARATUS 

3.1 General principles 
In comparison with the ordinary horizontal 

layer of fluid, the convection does not arise so 
well in theporousmedium unless the temperature 
difference between the upper and lower bound- 
aries becomes very high. If liquid is used as 
the fluid, it is easier than gas at the atmospheric 
pressure to generate the convective flow, but 
the necessary temperature differences are still 
high so that the temperature dependence of 
physical properties is apt to rise a discussion. 

Great thickness of the porous layer also 
facilitates the occurrence of convection, but it 
takes a very long time until a steady state is 
accomplished. In addition, horizontal extension 
of the porous layer also is necessary to prevent 
errors due to the side effects. This is apt to 
generate difficulties in securing the horizontal 
uniformities of temperature and of contact at 
the upper and lower boundaries as well as in 
preparing plenty of the precise fillings which is 
necessary in the present work. 

In the present study, therefore, the thickness 
of the porous layer is kept small, but the onset 
of convection is facilitated by using the tilling 
particles of comparatively great diameter. In 
addition, a gas (nitrogen) is adopted as the fluid 
so that convection currents can be generated 
under low temperature differences by compress- 
ing the gas. As both the kinematic viscosity and 
thermal diffusivity of the gas are nearly in 
inverse proportion to the pressure, rapid in- 
crease of Rayleigh number follows the increase 
of the pressure, enabling to serve our purpose 
readily. Besides this, gas has two more ad- 
vantages: (a) the temperature dependence of 
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physical properties is little; (b) the heat capacity 
is very little as compared with that of a solid so 
that the difference between (7) and (8) becomes 
particularly great. 

3.2 Description of apparatus 
Measurements of the apparent thermal con- 

ductivity of porous layers are made under 
steady conditions utilizing the so-called com- 
parison method. The onset of convection is 
readily found out by the sudden change of the 
apparent thermal conductivity. 

The most essential part of the experimental 
apparatus is shown in Fig. 4. In a pressure vessel 
is a porous layer of 100 mm in diameter and of 
1 (variable; 9 mm as the standard) in thickness 
set up. The upper boundary of the porous layer 
is in contact with a copper plate, which is 
cooled uniformly by the cooling water flowing 
over it. The lower boundary of the porous 
layer is in contact with a standard plate made 
of glass (8.1 mm in thickness and of known 
thermal conductivity). This standard plate is 
placed on another copper plate, which is 
heated uniformly by an electric heater placed 

Cooling 
copper plate 

below. Around the circumference of the porous 
layer, a thin frame made of Bakelite keeps the 
fillings. 

Nitrogen was used as the fluid, and it was 
supplied to the pressure vessel from a gas bomb 
of about 150 atm in pressure. As the gas enters 
readily into the porous layer also, the pressure 
of the gas in the porous layer is the same as that 
in the vessel, and was measured with a calibrated 
Bourdon-tube pressure gauge. 

The pressure vessel has nine pairs of special 
terminals for copper-constantan thermocouples, 
which were used to measure temperatures of 
three surfaces: the lower surface of the cooling 
copper plate, upper surface of the standard 
plate, and upper surface of the heating copper 
plate. Liquid paraffin was put between the 
standard plate and the heating copper plate 
not to leave a gas film there. The horizontal 
uniformity of temperature was found to be 
sufficient over each of the three surfaces. 
Adjusting power input to the electric heater, 
the temperature difference across the porous 
layer was kept at about 40 degC as the standard 
and occasionally at about 60 degC and 80 degC. 

Fwieage of 
cooling water I 

Terminal 
- for 

heator 

heater r T 

FIG. 4. Essential part of experimental apparatus. 



CRITERION FOR THE ONSET OF 

In determining the thermal conductivity of a 
porous layer with the apparatus shown in Fig. 4, 
errors arise due to the circumferential surfaces 
of both the porous layer and standard plate 
which are exposed to the surroundings. How- 
ever, theoretical examinations show that the 
effects are less than several percent within 
conditions of the present study. 

3.3 Examination of synthetic accuracy 
With an absolute method, careful measure- 

ments of the thermal conductivity of the 
standard plate were made within the necessary 
range of temperature. 

Then the synthetic accuracy of the experi- 
mental apparatus was examined by measu~ng 
the apparent thermal conductivity 1 of the 
ordinary layer of fluid, and by comparing the 
results with Silveston’s correlation [9]. The 
layer of fluid was readily prepared in the appara- 
tus without filling the particles. Temperatures 
of the upper and lower boundaries of the layer 
were kept at nearly constant respectively, and 
Rayleigh number Ra was changed by changing 
the pressure of gas only. Subtraction of effects 
of radiant heat transfer from the observed 
results was made with ease, since the tempera- 
ture of each of the two boundaries was nearly 
constant. 

Experimental results are shown in Fig. 5, 
where the ordinates are the ratios of A measured 
to the thermal conductivity of fluid L,, and the 
solid curve is Silveston’s correlation. According 
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to Fig. 5, it may be concluded that the synthetic 
accuracy of the experimental apparatus is 
sufficient for the present study. 

4. POROUS MEDIA USED 
4.1 Filling particles 

The porous media were composed with each 
of glass, steel and aluminium balls in order to 
give drastic variation of the thermal conductivity 
of the solid particles. 

Four kinds of glass balls of 0.779 mm, 
1.25 mm, 2.27 mm, and 466 mm in mean dia- 
meter respectively were used. Though being 
sold as the precision glass balls, they were 
found to have irregularity of shape to some 
extent, and the dispersion of diameters also 
was considerable as shown in Fig. 6. 

On the other hand, belonging to the precision 
grade for the ball bearings, two kinds of steel 
balls of 2GO mm and 4.00 mm in diameter, which 
were used, had almost perfect roundness and 
accuracy of dimension. Aluminium balls of 3.00 
mm in diameter which were used, also had a 
good roundness and accuracy of dimension with 
only minor errors of dimension less than & 1 
percent. 

However, being constructed as a random 
assemblage of filling particles, the porous 
medium has, in general, statistical characters 
so that it is governed with various kinds of 
mean values, and slight dispersions of the shape 
and dimension do not come into particular 
question. 

I02 103 104 103 106 I07 

f?a 

FIG. 5. Apparent thermal conductivity of horizontal layer of fluid. 
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FIG. 6. Two examples showing dispersion of diameter in glass halls (d’ : actual diameter. 
d: mean diameter, n: number of samples, N: total number of samples). 

d = 4.66mm 

N= 530 

Experiments were made over a comparatively 
wide range of d/l = OGW1, the d being the 
diameter of the filling particles, and the 1 
being the vertical thickness of the porous layer. 
Here, d/l = 1 is a very special case that mono- 
layer of particles is placed between the upper and 
lower bounding surfaces. 

4.2 Porosity 
Porosity, that is the ratio of the pore space to 

the whole volume of the porous medium, 
generally differs every time the porous layer is 
made. Consequently, whenever a new porous 
layer was submitted to the experiments, its 
porosity was carefully determined by measuring 
the weight and volume of the porous layer. 

As shown in Fig. 7, the porosity E has a 
tendency to increase with d/l to some extent 
when d/l approaches unity, and this is due to the 
pore space near the upper and lower bounding 
surfaces which is about 20 per cent greater than 
that inside the porous layer. However, the local 
difference of the pore space is not so great that 

its effects on the mean porosity are substantially 
negligible if d/l is less than, say, 0.2. 

4.3 Thermal conductivity 
In the experiment with the apparatus shown 

in Fig. 4, the thermal conductivity of the porous 
medium 11, is necessarily measured every time 
the experiment is made. 

It can be presumed that the effects of the 

06 

o Glass balls 1 

0.01 0.05 0.1 0.5 I.0 

d/L 

FIG. 7. Variation of porosity E with d/l. 
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radiant heat transmission on ;1, are subst~tially 
neglected under conditions of the present study. 
Fig. 8 is the comparison of A,,, measured in the 
present study with J,,, estimated by the semi- 
empirical equations of Yagi and others [lo], 
showing a rough agreement between them. 
Now, examining the rates of the radiant heat 
transmission included in the estimated values of 
&, they are negligible for the steel and aluminium 
balls, and are less than 5 per cent even for the 
glass balls with a high emissivity if d/l < 0.2. 

2 4 6 IO 20 40 

&,/A, hstimated) 

FIG. 8. Comparison of I, measured with I, estimated by 
semi-empirical equations of Yagi and others [lo] (A,: 

thermal conductivity of fluid). 

As is well known, the mechanical compression 
of the porous medium affects the thermal con- 
ductivity J.,,, especially when the material of 
the filling particles has comparatively great 
elasticity and high thermal conductivity. The 
cooling copper plate in the pressure vessel 
shown in Fig. 4 has a tendency to slightly distort 
upwards as the gas pressure inside the vessel is 
increased, since the cooling water contacting 
the upper surface of the copper plate is at the 
atmospheric pressure. Then the precompression 
which has been given initially is reduced 
decreasing the thermal conductivity of the 
porous medium. 

Finally it should be mentions that the thermal 
conductivity of the porous medium J,, con- 
siderably varies with the porosity when the 
difference of the thermal conductivity is very 
great between the solid particles and the fluid. 
Fig. 9 shows the variation of I, with d/l, for 
which it should be reminded that the mean 
porosity varies with d/l as shown in Fig. 7. 

0 Glass balls I I I I 

0 ’ I I I I 
0.01 0.05 0 I 0.5 IO 

FIG. 9. Variation of thermal conductivity of porous media 
d, with d/l. 

4.4 Remarks 
Some complicated characters of the porous 

media have been described so far. For the 
present study, however, it is enough if the 
properties such as the permeability, porosity, 
and thermal diffusivity, are known respectively 
for every porous medium subjected to the test, 
and for every condition of the test. It is analogous 
to that, if the properties such as the density and 
viscosity of the fluid are known, there is no 
necessity to discuss the movement or structure 
of molecules in the ordinary fluid dynamics. 

When d/l approaches unity, various factors 
such as the heterogeneity, anisotropy and others, 
inevitably arise complicating the situation from 
the theoretical point of view. It will be shown 
later, however, that the experimental results 
themselves do not exhibit so complex appear- 
ances even under such a special condition. 
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5. EXPERIMENTAL RESULTS 

In the experiments for the onset of convection, 
nitrogen was initially stored in the pressure 
vessel with the maximum pressure of the gas 
bomb for the sake of convenience. Then, 
reducing the gas pressure at adequate intervals, 
and confirming the establishment of the steady 
state at each pressure, the apparent thermal 
conductivity of the porous layer I was measured. 
The measurements were repeated a few times 
for every porous medium, the repetition of the 
same results being assured. 

Typical examples of the experimental results 
are presented in Fig. 10 for a layer filled with glass 
balls, and in Fig. 11 for that of steel balls, 
showing the variation of A with the gas pressure 
inside the layer. The convection occurs at the 
points where 2 commences a rapid rise with the 

Pressure, otm 

FIG. 10. Variation of apparent thermal conductivity I with 
gas pressure (packing of glass balls; d = 0.779 mm, 1 = 

8.9 mm. AT = 81 degC). 

0.1 1 
2 4 6 IO 20 40 60 100 200’ 

Praswra . otm 

FIG. 11. Variation of apparent thermal conductivity 1 
with gas pressure (packing of steel balls; d = 2,OOmm, 

I = 17,Omm. AT = 48 degQ 

increase of the gas pressure. The reason for 
the gradual reduction of 1 with the increase of 
the gas pressure in the range of the pure con- 
duction, particularly noticeable in Fig. 11 
for a packing of steel balls, has already been 
described in Section 4.3. This phenomenon does 
not give any obstruction to the present work, 
because the thermal conductivity of the porous 
medium just before the onset of convection is 
only necessary for the analysis, and it can be 
determined with ease from such experimental 
data as shown in Figs. 10 and 11. 

5.1 Comparisons with theoretical predictions 
In computing the critical Rayleigh number 

Ra from the experimental data aforementioned, 
all the physical properties of nitrogen are 
evaluated at the pressure and temperature 
(arithmetic mean between the two boundaries 
of the porous layer) of the starting point of 
convection. For the evaluations of the thermal 
expansion coefficient and density of gas, the 
deviations from the ideal gas law can be 
neglected within the present experimental range 
of pressure. As to the viscosity and specific 
heat, however, the pressure dependence is 
considerable so that the values corresponding 
to the pressure should be used. 

The thermal diffusivity x included in Ra is 
given by either (7) or (8), where the thermal 
conductivity of the porous medium L,,, is 
determined experimentally as described before. 
The denominator of (8): (c,p), is evaluated by 

(c&J& = ++P)/ + (1 - E)(CpL% 

where E is the porosity (measured), and the 
sufflxesfand s represent the fluid and the material 
of solid fillings respectively. 

In order to compare the experimental critical 
Rayleigh number thus obtained with the theo- 
retical prediction given by (5), it is necessary to 
evaluate the permeability of the porous media k. 
and the following semi-empirical Blake-Kozeny 
equation [ 1 l] is utilized : 

k= E3 d2 
150(1 - &)2 
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E denoting the porosity and d denoting the 
diameter of the filling particles. As is well known, 
this equation is valid for the laminar flow in the 
porous media composed with the spherical 
particles. In this case, (5) can be written as 
follows : 

Ra. E3 
0 

d 2 =1 &2 .&z. 
15q1 - &)2 1 . 

(14) 

Now that all is ready, let us compare the 
experimental results with (14). First, Fig. 12 
shows the case where (7) is applied as to the 
thermal diffusivity x, and it is noticed that the 
agr~ment between the experimental results and 
theoretical prediction is fairly good. On the 
contrary, the case applying (8) as to x gives 
Fig. 13 (N.B. the ordinates have values tenfold 
greater than those of Fig. 12), where not only 
do the experimental results heavily deviate 
from the theoretical prediction, but also the 
dispersion is slightly greater than in Fig. 12. 

‘i 
0 

104 
0 

4 
I I I i \ 

‘o.or 2 4 6 0.1 2 46 I 

d/i 

FIG. 12. Comparison of experimental critical Rayleigh 
number with theoretical prediction in case of x = &/(cPp), 

a.01 2 4 6 0.1 2 46 I 

d/i 

FIG. 13. Comparison of experimenta critical Rayleigh 
number with theoretical prediction in case of x = &,,@p),. 

5.2 Discussion 
With the result of Fig. 12, it may be concluded 

that the problem of the onset of convection in a 
porous medium has been given a conclusive 
answer of the same standard as in the ordinary 
layer of fluid, considering the inevitable uneven- 
ness of the porous media. Since the phenomenon 
is not essentially so complicated, it may be 
presumed that no peculiarity will take place 
even in the range of d/l less than the minimum 
value of d/i shown in Fig. 12 which has already 
reached near @04. 

At this stage, it may be of use to point out the 
following. Taking the fact into account that 
the porosity E usually takes values near 0.38 
for small d/l, the maximum value of the ordinate 
of Fig. 12, that is 2 x 104, corresponds to 
Ra + 2 x 10’. Approximately speaking, this 
is the upper limit of Rayleigh number which 
have been realized in the present work. Now, 
let us assume the case that experimental range 
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of Ra is extended up to 6.8 x 10s. which is the (2) Under special conditions near d/l = 1, 
maximum Ra experienced so far in the precise the critical Rayleigh number shows a tendency 
experiments of convection heat transfer in the to become higher than that given by the criterion 
ordinary horizontal layer of fluid. According aforementioned. However, the deviation is not 
to (5), however, d/l permitting the onset of so great. 
convection in the porous media can be reduced (3) Judging from the characteristics of the 
only up to 0.01 or so. Of course, the convection phenomenon, it may be concluded that the 
can be generated with ease for extremely small general criterion for various porous layers 
values of d/l, provided that the thickness of the besides the layers filled with the spherical 
porous layer I is increased very much, but the particles is given by 
precise experiments will become difficult as 
described in Section 3.1. 

Finally, it should be noticed that Fig. 12 
Ra .+ = h-c2 

includes the data extending up to d/l = 1. provided that Darcy’s law can be applied for 
In the range of d/l = 0.2-1.0 at least, the factors the flow in the porous media. and x is defined 
such as the heterogeneity, anisotropy and others 
should never be neglected. However, so far as 

as x = L,/(c,~)~. 
(4) After all, not only is the theoretical result 

the experimental data are concerned, we are of Horton and Rogers [2]. and of Lapwood [3] 
given a rather simple conclusion that the criterion certainly useful but also it can cover a notably 
for the onset of convection does not heavily wide scope, provided that the definition of the 
deviate from (5) even though d/l approaches thermal diffusivity is modified. 
unity. 
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R&III&-Le but de cet article est d&tidier soigneusement la perte de la stabilite dune couche de fluide 
soumise a un gradient vertical de temperature darn un milieu poreux et de dormer un critbre d&&if pour 
le dtmarrage des courants de convection. 

On a mis en evidence thdoriquement que le phtnomene dkpend dune diifusivitt thermique definie dune 
fapon sp&ciale et qu’il est possible que la theotie ordinaire bask sur la loi de Darcy soit applicable m&me 
lorsque la permeabifite du milieu poreux devient considerablement &e&e. Des experiences ont egalement 
&e conduites avec soin, dans lesquelles les diflicult&s pour engendrer l’&coulement de convection dans le 
milieu poreux avec un gradient de temperature raisonnable sont surmontees en employant un milieu 
poreux de perm&abilitt relativement elevb ainsi qu’un gaz comme fluide. 

On a obtenu un accord satisfaisant entre les resultats experimentaux et la theorie, ce qui amene a 
con&ire que le critere pour le debut de 1’Coulement de convection est certainement dotme par l’equation 
Ra. k/P = 4x2, oQ Ru est le nombre de Rayleigh, k la permCbilitt et I I%paisseur verticale du milieu 
poreux, mais que la diffusivitt thermique entrant dans Ru doit etre definie comme le rapport de la con- 

ductivite thermique du milieu poreux et de la chaleur specifique du fluide. 

Zuaammenfassnng-In der vorliegenden Arbeit wird eine sorgfaltige Untersuchung durchgefdhrt tiber 
den Zusammenbruch der Stabilitit einer Fliissigkeitsschicht in einem poriisen Medium unter dem Einfluss 
eines vertikalen Temperaturgradienten und es wird ein abschliessendes Kriterium fti das Einsetzen der 
Konvektionsstromung angegeben. 

Auf Grund theoretischer Uberlegungen wird gezeigt, dass das Phiinomen von einer speziell definierten 
Tem~raturlei~hi~eit beeintlusst wird und dass die Anwendung einer einfachen Theorie, die auf Darcy’s 
Gesetz beruht mbglich erscheint, selbst wenn die Durc~ssi~eit des poriisen Mediums verh~lgnism~~ig 
wird. Sorgf&ltige Versuche wurden ebenfalls durchgefihrt; darin sind die Schwierigkeiten, konvektive 
Striime im porlisen Medium bei tragbaren Temperaturgradienten zu erhalten dadurch umgangen, dass 
poriise Medien verh;iltnism%ssig grosser Durchliissigkeit und kompressible Case als fluides Medium 
verwendet wurden. 

Zufriedenstellende Ubereinstimmung der Versuchsergebnisse mit der Theorie wird erhalten. Daraus ist 
zu schliessen, dass ein Kriterium fur- das Einsetzen der Konvektionsstriimung durch die Gleichung 
Ru k/P = 4x2 gegeben wird. Dabei ist Ra die Rayleigh-zahl, k die Durchl~ssi~eit und I die vertikale 
Dicke des poriisen Mediums. Die Tempera~rleitf~hi~eit in RQ ist definiert ah die ~~eleitf~hi~~t 

des porosen Mediums geteilt durch die spezifische W&me und Dichte des 3uiden Stoffes. 

hm'raqE~-qenb HaCTOFlw;eflr CTaTbH-TlQaTeJIbHOe UCCJleJ&OBaHMe HapJ'UIeHHrt YCTOhi- 

BOCTW m4nKoro w10If non Boa~eWrBsieiu nonepeworo rpaaMei3Ta TemepaTyp B IIOpMCTOft 

tpeAe,aTafwe noayseme xpafrepm BOBHHKHOBeHAR KoHBeKTmmx 110~0~09. 

Ha ocHoisaHm Teopemmemoro aHamaa oTMeqaeTcK,q~o aTo mneme cm3aKo c 0c06ara 

06pa30a o~pe~e~enH0~ ~~nepa~po~po3oAHocTb~ u 9~0 zsMeeT4z.K BoaMo~ocTb npwnieae- 

HER Ii3BeCTHOa TeOpX%l, IIOCTpOeHHOii Ha F3aKOHe ,@pCH, Aa?Ke T0l'&i HOrAa npO~~~aeMOCTb 
nOpnCTOi CElCTeMbI AOBOJtbHO BYCOKI. B TllJaTeJlbHHX aKCilepUMeHTaX TpYAHOCTb CO'dAaHUll 

HOHBeKTHBHOl?O IIOTOKa B KOpMCTOtt Cpene llOg AettCTBkleM OTHOCI(TeJlbH0 HeBblCOKOFO rpa- 

AIleHTa TeMIlepaTypbl IlpeOAOJlelIa 6JlarO~apHHCIIOi'IbaOBaHEii0 KPK CliCTeMblCOCpaBHUTeJlbHO 

~b1c0~0t npoHMsaenfocTbm,TaK II cmmdaeMor0 raaa B KaqecTBe pa6oqeroTena. 

YAOBJIeTBOpHTeJlbHOe COOTBeTCTBHe MelKQ’ TeOpeTWJeCKUMH U lIOJiy~eHHb4SH 3KCKepH- 

~eHTa~bH~~~ AaHH~M~ KOaBO~~~O CAeJlaTb BblBO& YTO Kp~Tep~~ BOaH~KHOBeH~~ KOHBeK- 

THBHOI'O IlOTOKa MO2KeT 6biTb ~PeACTaB~eH B B?fAe Ra . k/l= = 4?+, rEe Ra 'ZHC.310 PeJleSi, 

k-qmiHIlaeMoCTb, i-TOJIIQHHa IIOpZlCTOii CUCTeMbl, a Te~lIepaTypOIIpOBO~HOCTb X Onpe- 

AeJlfl'ZTCH OTHOUJt?HkK?M Tel-lJlOilpOBOAHOCTK l-lOpMCTOi CEiCTf?MhI K YAWlbHOfi T'.?lIJIOeMKOCTki 
pa6osero Tena. 


