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Abstract—The purpose of the present paper is to make a careful study of the breakdown of stability of a
layer of fluid subject to a vertical temperature gradient in a porous medium, and to give a conclusive
cirterion for the onset of convection currents.

Through theoretical examinations, it is pointed out that the phenomenon is affected with a specially
defined thermal diffusivity, and that there are possibilities for the ordinary theory based upon Darcy’s
law to be applicable even when the permeability of the porous medium becomes considerably high.
Careful experiments also are carried out, in which the difficulties to generate the convective flow in the
porous medium under reasonable temperature gradient are overcome by the use of the porous medium
of comparatively high permeability, as well as by the use of a compressible gas as the fluid.

Satisfying agreement of the experimental results with the theory is obtained to provide conclusions that
the criterion for the onset of convective flow is certainly given by the equation: Ra.k/P = 47 where Ra
is Rayleigh number, k the permeability, and ! the vertical thickness of the porous medium, but that the
thermal diffusivity included in Ra must be defined as the thermal conductivity of porous medium divided

by the specific heat capacity of fluid.

NOMENCLATURE v, kinexpatic viscosity ;

Cp specific heat at constant pressure; P, density; '

d,  diameter of filling particles; E ;ﬁ 333: %ff ﬂntixidxg o sorid and T
g, gravitational acceleration; ”"" valus of s lidu ¢ of sohid and lluid;
k, permeability ; 5 olid.

L vertical thickness of porous layer; 1. INTRODUCTION

T e of fluid; -
%a II;: sls;rh(:lfunl:]l,:; = gBIPAT/(v); THE PROBLEM of the occurrence of convection
T ’ tergpefamre. =9 ” currents in a horizontal layer of viscous fluid
; ? . . . } R
AT, temperature difference between upper such as shown in Fig. 1(a) has been given a

and lower bounding plates;
t, time;
u, v, w, components of velocity;
x, y, 2z, coordinates.

Greek symbols
B, cubical expansion-coefficient ;
g, porosity;
®, thermal diffusivity;
A, thermal conductivity;
Ams thermal conductivity of porous me-
dium (without convection);
U, viscosity ;
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conclusive answer by experimental verifications,
as well as by the theory originated by Rayleigh
and finally extended to the work of Pellew and
Southwell [1]. On the other hand, Fig. 1(b)
is a porous medium composed with spherical
fillings as an example. The convective flow
occurs in such a case also when heated from
below, but the criterion for the occurrence of
convection has not been confirmed so well as
in the former case.

In connection with the distribution of NaCl
in subterranean sand-layers, Horton and Rogers
[2] made a theoretical analysis. Lapwood [3]
also solved the problems of similar kind
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independently and more exactly, and gave the
same result as that of Horton and Rogers for
the porous medium which is bounded above and
below by rigid and conducting boundaries.
On the other hand, Morrison, Rogers and
Horton [4] made experiments to verify the
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(a) (b)

FiG. 1.
(a) Horizontal layer of fluid.
(b) Porous layer with spherical fillings.

theoretical result, but due to the unsteady
conditions under which their experiments were
made as well as due to other reasons, not only
were the results complicated but they did not
agree with the theoretical predictions. Then
Rogers and others [5, 6] attempted to compare
their experiments with the approximate theories
which allow for the non-linear temperature
distributions and for the temperature depen-
dence of viscosity, but it cannot be denied from
the viewpoint of the fundamental analysis of
the phenomenon that great ambiguities are left.

At this stage, the present work has been
attempted to give a definite answer to the
problem through both the examinations of
the theory and experimental verifications.

2. EXAMINATIONS OF THEORY

The actual flow of fluid in a porous medium
is replaced by the hypothetical uniform flow of
the same gross rate, assuming the space to be
homogeneous. For this flow the expression of
the resistance differs from the ordinary flow,
and instead of the shearing stress proportional
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to the velocity gradient, Darcy’s law is generally
applied:

(u/k)v = — grad p (1)

where u is the viscosity, k the permeability (a
constant with the dimension of square of
length), v the macroscopic velocity and p the
pressure of the fluid.

Taking rectangular axes in a porous medium
as shown in Fig. 2 where the space is assumed
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Fi1G. 2. Porous layer bounded by two horizontal surfaces.

to be uniform, let u, v and w be the macroscopic
velocity components of fluid, and let p be the
density, T the temperature, t the time, and g
the gravitational acceleration. Then, only re-
placing the customary viscosity term in the
equations of a horizontal layer of fluid by the
resistance term in the left-hand side of (1),
provides the equations of continuity, of motion
and of energy as follows:
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where x in (4) is the thermal diffusivity of porous
medium.
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The criterion for the onset of convection
currents can be derived with these governing
equations in quite the same way as in the
horizontal layer of fluid, except that the bound-
ary conditions for velocity at the upper and
lower bounding planes are now w = ( instead
of u=v=w=0. Then the criterion, which
Lapwood [3] has derived, can be written as

Ra. lﬁz = 4n? %)
where Rayleigh number Ra = gBIPAT/(vx), and
B is the cubical expansion-coefficient of fluid,
I the vertical thickness of porous medium, AT
the temperature difference between the two
bounding planes, and v the kinematic viscosity.

2.1 Examinations

Since the fillings are included in a small
control volume shown in Fig. 2, dp/dt included
in Dp/Dt in (2) must be correctly replaced by
€dp/ot, the ¢ denoting the porosity (Muskat [7]).
In the left-hand side of (3), the forces of inertia
depending upon the time variation of the
macroscopic velocities are different from the
actual forces. In addition, it is used to neglect
the force of inertia in the flow through a porous
medium, since the force of inertia is extremely
small as compared with the viscous resistance.

These points, however, go out of the question
for thefollowing circamstances. In the theoretical
investigation on the onset of convection currents,
(a) variations of density are used to be neglected,
except in so far as they modify the action of
gravity; (b} second-order terms are used to be
neglected; (c) as pointed out primarily by
Jeffreys [8), the onset of convection currents is
characterized by the condition of marginal
stability, that is, the condition which is obtained
by placing d/0t = 0. These three conditions,
which are quite reasonable, make the left-
hand sides of both (2) and (3} vanish to leave no
space for the questions aforementioned to affect
the theoretical prediction of (5).

However, the balance among the time varia-
tion of the energy stored in a small control
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volume shown in Fig. 2, the transportation of
enthalpy by the flow of fluid, and the heat
conduction through the control volume, yields

S+ (el (45 + 05+ w )
P ot P dy 0z
(Teeren) e
T T

where c, is the specific heat at constant pressure,
p the density, and A the thermal conductivity.
The suffix m denotes the mixture of solid fillings
and fluid, and the suffix f denotes the fluid.

Comparing (4) with (6), and placing &/0t =
from the condition of marginal stability, it is
found that the special thermal diffusivity de-
fined as

# = dn/lc,p)s @
must be used in (5) instead of
* = Apnf/(C 0 ) ®)

which has been used up to now. Since the
magnitude of x defined in (7) is considerably
different from that in (8) in general, the distinc-
tion between them is of great importance.

2.2 Applicable range of equation (5)

The inclined solid line shown in Fig. 3
is the result of (5), giving the critical Rayleigh
number Ra as a function of k/I>. When the
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FiG. 3. Critical Rayleigh number Ra as a function of k/I%.
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permeability & becomes high, however, the
resistance due to Darcy’s law (1) inevitably
reduces. It is, therefore, presumed from the
physical point of view that the phenomenon
changes its mode towards that of the ordinary
horizontal layer of fluid, the horizontal line
in Fig. 3 showing its theoretical criterion of
Ra = 1708,

Although the exact analysis of this transitional
region has great difficulties, let us attempt the
following analysis for the sake of convenience.
In the governing equations (2), (3) and (4), the
ordinary viscous resistance uV2(u, v, w) is added
to the right-hand side of (3) yielding

D
Y (u. v, w) = (0,0. —pg)

a é @ u )
- (5; E —8;)17 - E(“’ v, w) + uV=i(u, v, w)
(39

where the boundary conditions for velocity at
two bounding planes are u =v =w = 0. As
clear from (3'), the present analysis approaches
to the theory of the porous medium as the
permeability k reduces, and it does to the theory
of the ordinary layer of fluid as k increases;
consequently, as the first approximation at
least, the present analysis can connect the two
theories.

The analysis is accomplished in the way
analogous to that of Pellew and Southwell [1].
Under the conditions of (a), (b) and (c) described
in Section 2.1, the small departure from the
state of equilibrium are considered following (2),
{3') and (4). Eliminating u and v as well as the
departure of temperature and pressure by
combining the equations, yields the following
differential equation as to the vertical compo-
nent of velocity w:

| gPa (O*w  &*w
L A — =+ =) =0 9
(V k)v Wt (6x2 * ay? ®)
o denoting the temperature gradient (x < 0).
Putting w = w(z) sin mx sin ny and z = I{in
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(9), yields

IEDZ —a?)? - (D* — a?)?

Py +Ra.a2]w=0
(10)

where wehave written D = 6/0(,a® = (m* + n?)?
which is a characteristc number not yet deter-
mined, and Ra = —gpl*a/(vx) = gBIPAT/(vx)
which is Rayleigh number. The boundary
conditions at the two rigid conducting planes
that u=v=w =0 and no disturbance of
temperature, also can be unified in terms of w as:

w =0,
Dw = 0,
[(D? — a®)? — (D? — a?)/(k/I*)]w = 0.
The general solution of (10) can be written in
the form
w = A,cosh2y,{ + 4,cosh2y,{
+ Ajcosh2y;{ + B;sinh 2y,{ + B,sinh2y,{
+ B sinh 2y,(

(1)

(12)

where A,, 4,, A3, B,, B,, B, are arbitrary and
4y1, 4y3, 492 are the three values of D? which
are given when (10) is solved symbolically.
If k/I? is small as in the case of particular im-
portance in the present paper, all the three
values of D? are real and they are

-

1+ 2cos r/3
3k/12 ’
, 1+ 2cos(r/3 + 120%)
3k/ 12 ’
1 + 2 cos(r/3 + 240°)
2
@t 3k/P

D? =4y’ = a® +

b (13)

where

cosr =1 — 1 Ra.ad%(3k/?)>.

If k/I? is sufficiently small, (13) can be approxi-
mated as follows:

49> = a® + 1)(k/1?);
a? + a . /(Ra.k/%).

The six arbitrary constants in (12) are deter-
mined so as to satisfy the three boundary

a®> — a\/(Ra . k/1?);
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conditions of (11) at each of the upper and lower
boundaries. The problem is to find the- state
permitting the convective flow, that is, the state
for which the six constants in (12) do not vanish
simultaneously. For convenience the origin
of { will now be changed .so as to define the
upper and lower boundaries at { =3, { = —3
respectively. Then, in order for (12) to satisfy (11)
at { = +1 simultaneously, it should be either
B, =B, = B; =0 (even solution) or 4, =
A, = A; = 0 (odd solution).

Substitution of the even solution into (11)
gives three conditional equations for A, 4,, A,,
leading us to a determinant that must be
satisfied to deny simultaneous vanishing of
A,, A,, A Included in the determinant are Ra,
a® and k/I?, so that it gives a relation between
Ra and a? fixing k/I?. Then the lowest admissible
value of Ra can be found at any value of k/I* by
changing a®. The same procedure is possible for
the odd solution as well, but the lowest value of
Ra thus obtained is higher than that obtained
with the even solution. Consequently the critical
Rayleigh number is determined by the even
solution, and the results are shown in Fig. 3
with a broken curve.

This theoretical presumption seems likely
to suggest that the region, over which (5) is
applicable, can extend at least up to the magni-
tude of k/I* of 10~ 3 or so. If the porous medium
made of spherical particles is considered, k//?
= 107 3 corresponds to considerably high values
of d/I, where d is the diameter of the fillings and
[ the vertical thickness of the porous medium.

For high values of d/I, the assumption of the
homogeneity in the field may become question-
able. As regards the theory, however, it must
be pointed out that the microscopic state has
been homogenized assuming the macroscopic
velocities: u, v, w and macroscopic temperature :
T, and that the theory has been constructed
using the permeability k and the thermal
conductivity of the porous medium 4, which
are both defined for the macroscopic quantities
aforementioned. In addition, approximately
speaking, the k and A, are to be determined as
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properties of the unit space per one of the filling
particles. Consequently it is not unreasonable
to presume that even when d/I becomes com-
paratively high, the accuracy of the theoretical
predictions does not deteriorate excessively
if very severe variations of velocity and tempera-
ture do not appear in the field.

3. EXPERIMENTAL APPARATUS

3.1 General principles

In comparison with the ordinary horizontal
layer of fluid, the convection does not arise so
wellin the porous medium unless the temperature
difference between the upper and lower bound-
aries becomes very high. If liquid is used as
the fluid, it is easier than gas at the atmospheric
pressure to generate the convective flow, but
the necessary temperature differences are still
high so that the temperature dependence of
physical properties is apt to rise a discussion.

Great thickness of the porous layer also
facilitates the occurrence of convection, but it
takes a very long time until a steady state is
accomplished. In addition, horizontal extension
of the porous layer also is necessary to prevent
errors due to the side effects. This is apt to
generate difficulties in securing the horizontal
uniformities of temperature and of contact at
the upper and lower boundaries as well as in
preparing plenty of the precise fillings which is
necessary in the present work.

In the present study, therefore, the thickness
of the porous layer is kept small, but the onset
of convection is facilitated by using the filling
particles of comparatively great diameter. In
addition, a gas (nitrogen) is adopted as the fluid
so that convection currents can be generated
under low temperature differences by compress-
ing the gas. As both the kinematic viscosity and
thermal diffusivity of the gas are nearly in
inverse proportion to the pressure, rapid in-
crease of Rayleigh number follows the increase
of the pressure, enabling to serve our purpose
readily. Besides this, gas has two more ad-
vantages: (a) the temperature dependence of
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physical properties is little;; (b) the heat capacity
is very little as compared with that of a solid so
that the difference between (7) and (8) becomes
particularly great.

3.2 Description of apparatus

Measurements of the apparent thermal con-
ductivity of porous layers are made under
steady conditions utilizing the so-called com-
parison method. The onset of convection is
readily found out by the sudden change of the
apparent thermal conductivity.

The most essential part of the experimental
apparatus is shown in Fig. 4. In a pressure vessel
is a porous layer of 100 mm in diameter and of
I (variable; 9 mm as the standard) in thickness
set up. The upper boundary of the porous layer
is in contact with a copper plate, which is
cooled uniformly by the cooling water flowing
over it. The lower boundary of the porous
layer is in contact with a standard plate made
of glass (8:1 mm in thickness and of known
thermal conductivity). This standard plate is
placed on another copper plate, which is
heated uniformly by an electric heater placed

Cooling
copper plate

Porous layer

Standard plote

G

Heating
copper plate

Gas entranc

Terminal for
heater
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below. Around the circumference of the porous
layer, a thin frame made of Bakelite keeps the
fillings.

Nitrogen was used as the fluid, and it was
supplied to the pressure vessel from a gas bomb
of about 150 atm in pressure. As the gas enters
readily into the porous layer also, the pressure
of the gas in the porous layer is the same as that
in the vessel, and was measured with a calibrated
Bourdon-tube pressure gauge.

The pressure vessel has nine pairs of special
terminals for copper—constantan thermocouples,
which were used to measure temperatures of
three surfaces: the lower surface of the cooling
copper plate, upper surface of the standard
plate, and upper surface of the heating copper
plate. Liquid paraffin was put between the
standard plate and the heating copper plate
not to leave a gas film there. The horizontal
uniformity of temperature was found to be
sufficient over each of the three surfaces.
Adjusting power input to the electric heater,
the temperature difference across the porous
layer was kept at about 40 degC as the standard
and occasionally at about 60 degC and 80 degC.

Possage of
cooling water

thermocouple

N Electric heater

FiG. 4. Essential part of experimental apparatus.
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In determining the thermal conductivity of a
porous layer with the apparatus shown in Fig,. 4,
errors arise due to the circumferential surfaces
of both the porous layer and standard plate
which are exposed to the surroundings. How-
ever, theoretical examinations show that the
effects are less than several percent within
conditions of the present study.

3.3 Examination of synthetic accuracy

With an absolute method, careful measure-
ments of the thermal conductivity of the
standard plate were made within the necessary
range of temperature.

Then the synthetic accuracy of the experi-
mental apparatus was examined by measuring
the apparent thermal conductivity A of the
ordinary layer of fluid, and by comparing the
results with Silveston’s correlation [9] The
layer of fluid was readily prepared in the appara-
tus without filling the particles. Temperatures
of the upper and lower boundaries of the layer
were kept at nearly constant respectively, and
Rayleigh number Ra was changed by changing
the pressure of gas only. Subtraction of effects
of radiant heat transfer from the observed
results was made with ease, since the tempera-
ture of each of the two boundaries was nearly
constant.

Experimental results are shown in Fig. 5,
where the ordinates are the ratios of 4 measured
to the thermal conductivity of fluid 4., and the
solid curve is Silveston’s correlation. According

50
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to Fig. 5, it may be concluded that the synthetic
accuracy of the experimental apparatus is
sufficient for the present study.

4. POROUS MEDIA USED
4.1 Filling particles

The porous media were composed with each
of glass, steel and aluminium balls in order to
give drastic variation of the thermal conductivity
of the solid particles.

Four kinds of glass balls of 0779 mm,
125 mm, 2:27 mm, and 466 mm in mean dia-
meter respectively were used. Though being
sold as the precision glass balls, they were
found to have irregularity of shape to some
extent, and the dispersion of diameters also
was considerable as shown in Fig. 6.

On the other hand, belonging to the precision

. grade for the ball bearings, two kinds of steel

balls of 200 mm and 4-00 mm in diameter, which
were used, had almost perfect roundness and
accuracy of dimension. Aluminium balls of 3:00
mm in diameter which were used, also had a
good roundness and accuracy of dimension with
only minor errors of dimension less than +1
percent.

However, being constructed as a random
assemblage of filling particles, the porous
medium has, in general, statistical characters
so that it is governed with various kinds of
mean values, and slight dispersions of the shape
and dimension do not come into particular
question.

AN,

o {=89mm

el=4mm o©0?°

o 0
M
'M

/ s Silveston
[ J
i (-}
o

162 103 104 108 108 107 108

Ra

Fi1G. 5. Apparent thermal conductivity of horizontal layer of fluid.



304 Y. KATTO and T. MASUOKA

P 25 25 W
d=2-27mm ES d=4-66mm
Sz N =429 - N=530
QIE
20 o]
15 IS
10 lo
5 5
T 0 20 30 30 20 o 20 30
(d d)Vd, % (dLayvid, %

F1G. 6. Two examples showing dispersion of diameter in glass balls (d': actual diameter,
d: mean diameter, n: number of samples, N : total number of samples).

Experiments were made over a comparatively
wide range of d/l = 0-048-1, the d being the
diameter of the filling particles, and the !
being the vertical thickness of the porous layer.
Here, d/l = 1 is a very special case that mono-
layer of particles is placed between the upper and
lower bounding surfaces.

4.2 Porosity

Porosity, that is the ratio of the pore space to
the whole volume of the porous medium,
generally differs every time the porous layer is
made. Consequently, whenever a new porous
layer was submitted to the experiments, its
porosity was carefully determined by measuring
the weight and volume of the porous layer.

As shown in Fig. 7, the porosity ¢ has a
tendency to increase with d/l to some extent
when d/l approaches unity, and this is due to the
pore space near the upper and lower bounding
surfaces which is about 20 per cent greater than
that inside the porous layer. However, the local
difference of the pore space is not so great that

its effects on the mean porosity are substantially
negligible if d/I is less than, say, 0-2.

4.3 Thermal conductivity

In the experiment with the apparatus shown
in Fig. 4, the thermal conductivity of the porous
medium 4,, is necessarily measured every time
the experiment is made.

It can be presumed that the effects of the

06
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FiG. 7. Variation of porosity ¢ with d/!.
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radiant heat transmission on 4,, are substantially
neglected under conditions of the present study.
Fig. 8 is the comparison of 4, measured in the
present study with A, estimated by the semi-
empirical equations of Yagi and others [10],
showing a rough agreement between them.
Now, examining the rates of the radiant heat
transmission included in the estimated values of
A they are negligible for the steel and aluminium
balls, and are less than 5 per cent even for the
glass balls with a high emissivity if d/I < 0-2.

40 T
O Glass bulls @
®e
® Steel balls 3
20 |- 5
®  Aluminium °
- balis
=l (3
E 10
= & ®
L)
< ®
~
AE 6
[}
4
2 4 8 10 20 40

Am/ X, (estimated)

FiG. 8. Comparison of 4, measured with A, estimated by
semi-empirical equations of Yagi and others [10] (4,:
thermal conductivity of fluid).

As is well known, the mechanical compression
of the porous medium affects the thermal con-
ductivity 4,, especially when the material of
the filling particles has comparatively great
elasticity and high thermal conductivity. The
cooling copper plate in the pressure vessel
shown in Fig. 4 has a tendency to slightly distort
upwards as the gas pressure inside the vessel is
increased, since the cooling water contacting
the upper surface of the copper plate is at the
atmospheric pressure. Then the precompression
which has been given initially is reduced
decreasing the thermal conductivity of the
porous medium.
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Finally it should be mentioned that the thermal
conductivity of the porous medium 4, con-
siderably varies with the porosity when the
difference of the thermal conductivity is very
great between the solid particles and the fluid.
Fig. 9 shows the variation of A, with d/l, for
which it should be reminded that the mean
porosity varies with 4/l as shown in Fig. 7.
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[- 74
F1G. 9. Variation of thermal conductivity of porous media
.,y with d/l.
4.4 Remarks

Some complicated characters of the porous
media have been described so far. For the
present study, however, it is enough if the
properties such as the permeability, porosity,
and thermal diffusivity, are known respectively
for every porous medium subjected to the test,
and for every condition of the test. It isanalogous
to that, if the properties such as the density and
viscosity of the fluid are known, there is no
necessity to discuss the movement or structure
of molecules in the ordinary fluid dynamics.

When d/l approaches unity, various factors
such as the heterogeneity, anisotropy and others,
inevitably arise complicating the situation from
the theoretical point of view. It will be shown
later, however, that the experimental results
themselves do not exhibit so complex appear-
ances even under such a special condition.
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5. EXPERIMENTAL RESULTS

In the experiments for the onset of convection,
nitrogen was initially stored in the pressure
vessel with the maximum pressure of the gas
bomb for the sake of convenience. Then,
reducing the gas pressure at adequate intervals,
and confirming the establishment of the steady
state at each pressure, the apparent thermal
conductivity of the porous layer A was measured.
The measurements were repeated a few times
for every porous medium, the repetition of the
same results being assured.

Typical examples of the experimental results
are presented in Fig. 10 for a layer filled with glass
balls, and in Fig. 11 for that of steel balls,
showing the variation of A with the gas pressure
inside the layer. The convection occurs at the
points where A commences a rapid rise with the

2.0 ]—

kcal /m h degC
-

A,
(=]
~

T

l 2 4 6 10 20 40 60 100 200

Pressure , atm

FIG. 10. Variation of apparent thermal conductivity 4 with
gas pressure (packing of glass balls; d = 0779 mm, 1 =

89 mm, AT = 81 degC).

2-0
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o4f—g— A —1—

keal /m h deg C

02 {4

A,

| 2 4 6 10 20
Pressure, atm

Fi1Gg. 11. Variation of apparent thermal conductivity A
with gas pressure (packing of steel balls; d = 2:00 mm,
I = 170 mm, AT = 48 degC).

40 60 100 200

increase of the gas pressure. The reason for
the gradual reduction of 4 with the increase of
the gas pressure in the range of the pure con-
duction, particularly noticeable in Fig. 11
for a packing of steel balls, has already been
described in Section 4.3. This phenomenon does
not give any obstruction to the present work,
because the thermal conductivity of the porous
medium just before the onset of convection is
only necessary for the analysis, and it can be
determined with ease from such experimental
data as shown in Figs. 10 and 11.

5.1 Comparisons with theoretical predictions

In computing the critical Rayleigh number
Ra from the experimental data aforementioned,
all the physical properties of nitrogen are
evaluated at the pressure and temperature
(arithmetic mean between the two boundaries
of the porous layer) of the starting point of
convection. For the evaluations of the thermal
expansion coefficient and density of gas, the
deviations from the ideal gas law can be
neglected within the present experimental range
of pressure. As to the viscosity and specific
heat, however, the pressure dependence is
considerable so that the values corresponding
to the pressure should be used.

The thermal diffusivity » included in Ra is
given by either (7) or (8), where the thermal
conductivity of the porous medium 4, is
determined experimentally as described before.
The denominator of (8): (c,p), is evaluated by

(Cpp)m = B(Cpp)f + (1 - 8) (Cpp)s

where ¢ is the porosity (measured), and the
suffixesfand s represent the fluid and the material
of solid fillings respectively.

In order to compare the experimental critical
Rayleigh number thus obtained with the theo-
retical prediction given by (5), it is necessary to
evaluate the permeability of the porous media k.
and the following semi-empirical Blake-Kozeny
equation [11] is utilized:

3
k

B &
T 15001 — ¢)?

2
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¢ denoting the porosity and d denoting the
diameter of the filling particles. As is well known,
this equation is valid for the laminar flow in the
porous media composed with the spherical
particles. In this case, (5) can be written as
follows:

Ra.—2 (‘i)z —d4n2 (14

100 —e2\l) T

Now that all is ready, let us compare the
experimental results with (14). First, Fig. 12
shows the case where (7) is applied as to the
thermal diffusivity », and it is noticed that the
agreement between the experimental results and
theoretical prediction is fairly good. On the
contrary, the case applying (8) as to x gives
Fig. 13 (N.B. the ordinates have values tenfold
greater than those of Fig. 12), where not only
do the experimental results heavily deviate
from the theoretical prediction, but also the
dispersion is slightly greater than in Fig. 12.
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FiG. 12. Comparison of experimental critical Rayleigh
number with theoretical prediction in case of x = 1,./c,0),.
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FiG. 13. Comparison of experimental critical Rayleigh
number with theoretical prediction in case of % = A,/(¢,p)p

5.2 Discussion

With the result of Fig. 12, it may be concluded
that the problem of the onset of convection in a
porous medium has been given a conclusive
answer of the same standard as in the ordinary
layer of fluid, considering the inevitable uneven-
ness of the porous media. Since the phenomenon
is not essentially so complicated, it may be
presumed that no peculiarity will take place
even in the range of d/I less than the minimum
value of d/l shown in Fig. 12 which has already
reached near 0-04.

At this stage, it may be of use to point out the
following. Taking the fact into account that
the porosity ¢ usually takes values near 0-38
for small d/I, the maximum value of the ordinate
of Fig. 12, that is 2 x 10* corresponds to
Ra =2 x 107. Approximately speaking, this
is the upper limit of Rayleigh number which
have been realized in the present work. Now,
let us assume the case that experimental range
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of Ra is extended up to 6-8 x 108, which is the
maximum Ra experienced so far in the precise
experiments of convection heat transfer in the
ordinary horizontal layer of fluid. According
to (5), however, d/l permitting the onset of
convection in the porous media can be reduced
only up to 0-01 or so. Of course, the convection
can be generated with ease for extremely small
values of d/I, provided that the thickness of the
porous layer [ is increased very much, but the
precise experiments will become difficult as
described in Section 3.1.

Finally, it should be noticed that Fig. 12
includes the data extending up to d/l = 1.
In the range of d/l = 0-2-1-0 at least, the factors
such as the heterogeneity, anisotropy and others
should never be neglected. However, so far as
the experimental data are concerned, we are
given arather simple conclusion that the criterion
for the onset of convection does not heavily
deviate from (5) even though d/l approaches
unity.

The “‘range of experiment” entered in Fig. 3
corresponds to the experimental range of d/!
in Fig. 12. Although there are various ambiguous
problems when d/I approaches unity, it may be
of interest to notice that the tendency of
departure from (5) shown by the broken curve
in Fig. 3 appears in the experimental data in
Fig. 12 also.

6. CONCLUSIONS

(1) The criterion for the onset of convective
flow in a fluid in a horizontal porous layer
composed of the spherical fillings is given by

& dy?
T (&) = a2
Ra 1500—-a2<1> i

_gBPAT
Y

where
Ra

provided that x is defined as x = A,/(c,p),
This criterion is applicable in the range of
d/l less than, say. 0-1 ~ 0-2.

(2) Under special conditions near d/l = 1,
the critical Rayleigh number shows a tendency
to become higher than that given by the criterion
aforementioned. However, the deviation is not
$o great.

(3) Judging from the characteristics of the
phenomenon, it may be concluded that the
general criterion for various porous layers
besides the layers filled with the spherical
particles is given by

Ra —; = 4n?

provided that Darcy’s law can be applied for
the flow in the porous media. and » is defined

asx = Ay/(cpp)s-

(4) After all, not only is the theoretical result
of Horton and Rogers [2]. and of Lapwood [3]
certainly useful but also it can cover a notably
wide scope, provided that the definition of the
thermal diffusivity is modified.
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Résumé—Le but de cet article est d’étudier soigneusement la perte de la stabilité d’une couche de fluide
soumise 4 un gradient vertical de température dans un milien poreux et de donner un critére décisif pour
le démarrage des courants de convection.

On a mis en évidence théoriquement que le phénoméne dépend d’une diffusivité thermique définie d’une
facon spéciale et qu’il est possible que la théorie ordinaire basée sur la loi de Darcy soit applicable méme
lorsque la permeabilité du milieu poreux devient considérablement élevée. Des expériences ont également
&té conduites avec soin, dans lesquelles les difficultés pour engendrer I'écoulement de convection dans le
milieu poreux avec un gradient de température raisonnable sont surmontées en employant un milien
poreux de perméabilité relativement élevée ainsi qu'un gaz comme fluide.

On a obtenu un accord satisfaisant entre les résultats expérimentaux et la théorie, ce qui améne 3
conclure que le critére pour le début de I’écoulement de convection est certainement donné par ’équation
Ra. k/P = 4n*, ou Ra est le nombre de Rayleigh, k la perméabilité et / I'épaisseur verticale du milieu
poreux, mais que la diffusivité thermique entrant dans Ra doit étre définie comme le rapport de la con-

ductivité thermique du milieu poreux et de la chaleur spécifique du fluide.

Zusammenfassung—In der vorliegenden Arbeit wird eine sorgfiltige Untersuchung durchgefiihrt iiber
den Zusammenbruch der Stabilitiit einer Fliissigkeitsschicht in einem pordsen Medium unter dem Einfluss
eines vertikalen Temperaturgradienten und es wird ein abschliessendes Kriterium fiir das Einsetzen der
Konvektionsstromung angegeben.

Auf Grund theoretischer Uberlegungen wird gezeigt, dass das Phinomen von einer speziell definierten
Temperaturleitfdhigkeit beeinflusst wird und dass die Anwendung einer einfachen Theorie, die auf Darcy’s
Gesetz beruht moglich erscheint, selbst wenn die Durchliissigkeit des pordsen Medinms verhilgnismissig
wird. Sorgfaltige Versuche wurden ebenfalls durchgefiihrt; darin sind die Schwierigkeiten, konvektive
Stréme im pordsen Medium bei tragbharen Temperaturgradienten zu erhalten dadurch umgangen, dass
pordse Medien verhdltnismissig grosser Durchlissigkeit und kompressible Gase als fluides Medium
verwendet wurden.

Zufriedenstellende Ubereinstimmung der Versuchsergebnisse mit der Theorie wird erhalten. Daraus ist
zu schliessen, dass ein Kriterium fiir das Einsetzen der Konvektionsstromung durch die Gleichung
Ra k[P = 4n* gegeben wird. Dabei ist Ra die Rayleigh-zahl, k die Durchliissigkeit und / die vertikale
Dicke des porSsen Mediums. Die Temperaturleitfihigkeit in Re ist definiert als die Wirmeleitfahigkeit

des pordsen Mediums geteilt durch die spezifische Wirme und Dichte des fluiden Stoffes.

Anvoranua-—Ilens Hacromumel CTATHU-TIIATEIHHOE WCCIEROBAHME HApPYIIeHMA yCroHuu-
BOCTH HIKOI'0 CJOA MOX BO3AeHCTBMEM NONEpeYHOro rpafHeHTa TeMnepaTyp B MOPHCTOK
cpefie, & TAKKe NMONyUYeHue KPUTePHA BOBHUKHOBEHHA KOHBEKTHBHEIX ITOTOKOB.

Ha ocHOB3HMI TeOPETHYECKOIO AHAIN3A OTMEYAETCH, YTO HTO ABICHHE CBA33HO C 0COOHIM
0GpasoM OnpeHeNeHnHol TeMIePaTYPONPOBORHOCTHIO M YTO MMEeTCH BO3MOMHOCTb IPHMEHE-
HHMA H3BECTHON Teopmu, mocTpoeHHoON HA 3axoHe Jlapcu, gaske TOrjga Korga NpOHMUAEMOCTD
NOPUCTOH CUCTEMB! JOBOJIbHO BHICOKA. B TmaTenbHHX sKCHEPHMEHTAX TPYAHOCTH COBHAHMA
KOHBEKTMBHOIO IIOTOKA B MOpMCTOR cpefe mop AeiicTBHEM OTHOCHMTEIbHO HEBHCOKOIO rpa-
AMEHTa TeMIEePATYPH npeogoieHa O1aroxapsa HCHONL30BAHUIO KAK CHCTEMH CO CPABHHTEIBHO
BRICOKO MPOHMIIAEMOCTBIO, TAK H CHHMAEMOr0 Fasa B KauecTse palodero tela.

VYraosaeTBopuTeNbROE COOTBETCTBHE MEHAY TEOPETHUECKHMH M HOJIyYeHHBIMM BKCIepu-
MEHTaJNbHHMH JAHHHMM NO3BONKAC CAEJNATH BHBOJX, 9TO KpuTepuit BO3HNKHOBEHHA KOHBEK-
THBHOTO NOTOKA MOMeT OniTh HpegcraBiaed B Bune Ra . k/P* = 4#%, rge Ra umcno Penes,
K-mpOHMIaEMOCTh, [-TOMIIMHA  NHOPMCTOH CHCTEMBI, & TeMHepaTypPONPOBONHOCTE X Ofpe-
AeNfAeTCA OTHOWEHHEM TeNJIONPOBOJHOCTY NOPHCTON CHCTEMHW K YAEIbHOHN Tenj0eMKOCTH

pabouero rena.



